cognitive computing

CSRA: The C³SR Reviewer Assignment System

Omer Anjum, Hongyu Gong, Qiang Ning, 3 Suma Bhat, Jinjun Xiong, and Wen-Mei Hwu

¹University of Illinois at Urbana-Champaign, ²IBM T. J. Watson Research Center, ³Allen Institute for Artificial Intelligence

Motivation

center for

systems research

Peer review is crucial for scientific achievement. The conventional reviewer assignment process for academic conferences is now challenged by the fast-growing number of paper submissions (Fig 1): while timely review for all submissions is necessary, manual reviewer assignment is extremely labor-intensive due to the following reasons.

- **Time-consuming**: To judge the expertise of a reviewer on a specific submission, one often needs to learn the reviewer's research from his/her publication records.
- **Not scalable**: #judgments = #reviewers x #submissions
- Optimization difficulty: The assigning process is often an optimization problem with thousands of variables which also considers reviewer's load and review quality.
- Limited diversity: For a small reviewer pool, limited support is available to cover the diversity of topics in new submissions which is growing rapidly.

Proposed

Way Forward - Area Chairs and Senior Area Chairs

Figure 1: Rapid growth of the participation in the annual meeting of the Association for Computational Linguistics ACL [1]

Submission

Extract Keywords

Get Embeddings

Find Common

Topics

Rank Reviewers

Automated Reviewer Assignment

To address those issues, we propose to automate the process via modern natural language processing (NLP) and optimization techniques. Specifically, we expect to automatically

- judge the expertise level of each reviewer to each submission, by embedding all the submissions and the reviewers within the same semantic space
- assign a required number of expert reviewers to each submission by formulating the assignment process as an optimization problem, which can also
 - avoid conflicts of interests
 - balance the load of different reviewers

Existing Solutions

- LDA based models
- Mechanism: probability distribution over topics
- State-of-the-art examples: [2,3], TPMS[4],
- Limitation: fail to capture lexical level similarity
- LSI based models
 - Mechanism: identifying occurrence patterns of words in documents
 - Limitation: rely on lexical overlap to measure document similarity
- TFIDF based models
- Mechanism: words weighting based on their importance
- Limitation: constrained to word-level comparison in similarity evaluation

Embeddings **Common Topic Model**

Open Source

Databases

Data

Collection

• Reviewer profile: $R = [r_1, r_2, ..., r_n]$, where r_i is the embedding of the ith word in their profile

Conflict of

Interest

Conflicts from the

submission system

Pretrained

Word

- Reviewer topic vectors: $P = [p_1, p_2, ...]$
- Reviewer topics are extracted from the profile: P = Ra, (a is coefficient)
- Submission $S: S = [s_1, s_2, ..., s_m]$, where s_i is the embedding of the jth word in a submission
- Submission topic vectors: $Q = [q_1, q_2, ...]$
- Submission topics are extracted from the submission:

Q = Sb, (b is coefficient)

Features

- Do not rely on Bag-of-Words models
- Automatic keyword extraction
- Prioritize recent research interests
- No human in the loop
- Easy to use: simply upload submission abstracts and meta-data in the format used by popular systems like "hotcrp"

Reviewer Matching

Assign

Submission

to Reviewer

• Common topic pairs (P, Q) between reviewer R and submission S $\max sim(P, Q)$

s.t.
$$P = Ra$$
,
 $Q = Sb$
 $P^{T}P = Q^{T}Q$ (no duplicate topics)

- Reviewer-Topic relevance: $rel(R, P) = sim^2(R, P)$
- Submission-Topic relevance: $rel(S, P) = sim^2(S, P)$
- Reviewer-Submission relevance:

$$rel(R,S) = \frac{2 \cdot rel(R,P) \cdot rel(S,P)}{rel(R,P) + rel(S,P)}$$

Evaluation Metric

- Precision @ Top N or P@N
- true positive / (true positive + false positive)

Data

- Submission: ~150 papers published in NIPS 2006
- Reviewer pool: ~360 reviewers for NIPS 2006
- Annotation: Around 650 human judgments are available as groundtruth

Results

Method	P@5	P@10
Common Topic Model (Proposed)	75.0	69.6
Hidden Topic Model	59.3	51.7
LDA*	61.7	51.8
HDP	45.5	38.0
Doc2Vec	52.5	44.19
WMD	35.0	39.87

^{*} Most of the state of the art systems including the ones mentioned in existing solutions use LDA

It is coming online!

Conclusions

- This task heavily relies on extracting relevant keywords
- Use of embeddings instead of tokens is proven to be a robust way for this task to overcome vocabulary mismatch between submissions and reviewers
- The proposed common topic modeling shows a strong empirical performance over baselines

Future Work: Data collection

- Collection of new reviewer assignment datasets, which we have planned for the upcoming conferences including ISCA, MICRO and HPCA.
- A large, randomly selected set of (reviewer, submission) pairs
- A small but fully annotated set of (reviewer, submission) pairs

Future Work: System Development

- Evaluate the performance of more sophisticated neural encoders to profile reviewers
- Get supervision from readily available resources, by assuming that
 - Citation networks can provide unique signals of reviewers
 - One should be a good reviewer for his/her own papers.

References

[1] (Online) acl2019pcblog.fileli.unipi.it/?p=156

[2] David Mimno and Andrew McCallum. 2007. Expertise modeling for matching papers with reviewers. In Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining (KDD '07)

[3] Xiang Liu, Torsten Suel, and Nasir Memon. 2014. A robust model for paper reviewer assignment. In Proceedings of the 8th ACM Conference on Recommender systems (RecSys '14)

[4] L. Charlin, R. S. Zemel. The Toronto paper matchingsystem: an automated paper-reviewer assignmentsystem. (ICML) 2013