The Cramér-Rao Bound and Its Application to Quantification in MRS

Qiang Ning
Department of Electrical and Computer Engineering
Beckman Institute for Advanced Science and Technology
University of Illinois at Urbana-Champaign

Abstract

Cramer-Rao Bound (CRB) is an important inequality on the error correlation matrix of an estimator. It describes the theoretical lower bound for an estimator (usually unbiased). Therefore, it is a useful index of how efficiently an estimator is. Here we will summarize the derivation of CRB, list some examples and apply this analysis to the quantification (parameters estimation) of spin-echo signals in MRI.

I. CRAMER-RAO BOUND

This section and the following examples section are essentially based on Levy’s book Principles of signal detection and parameter estimation [1].

A. Definition

Let the parameters of an estimator be an m dimensional vector \(x \), and the measurement data be an n dimensional vector \(Y \). The estimator here is denoted by \(\hat{X}(Y) \). The Cramer-Rao Bound that we usually used for unbiased estimators is

\[
C_E(x) \geq J^{-1}(x),
\]

where

\[
C_E(x) = E[(x - \hat{X}(Y))(x - \hat{X}(Y))^T]
\]

is the error correlation matrix of \(X \), and

\[
J(x) = E_Y[\nabla_x \ln f_Y(Y|x)(\nabla_x \ln f_Y(Y|x))^T],
\]
or equivalently (which is proved in [1]),

\[J(x) = -E_Y[\nabla_x \nabla_x^T \ln f_Y(Y|x)], \tag{4} \]

is the so-called Fisher Information in \(Y \) about the parameters in \(X \). Note in (3) and (4), \(f_Y(Y|X) \) is the conditional probability distribution function of measurement \(Y \) on parameters \(X \), and the gradient operator is defined as

\[\nabla_x = \begin{bmatrix} \frac{\partial}{\partial x_1} & \frac{\partial}{\partial x_2} & \cdots & \frac{\partial}{\partial x_m} \end{bmatrix}^T. \tag{5} \]

In practice, the Fisher Information can be calculated entry-wisely in the following two ways.

\[J_{i,j}(x) = E_Y[\frac{\partial}{\partial x_i} \ln f_Y(Y|x) \frac{\partial}{\partial x_j} \ln f_Y(Y|x)] = -E_Y[\frac{\partial^2}{\partial x_i \partial x_j} \ln f_Y(Y|x)]. \tag{6} \]

Given this bound, we have the estimator variance of each parameter,

\[E[(x_i - \hat{x}_i(Y))^2] \geq [J^{-1}]_{ii}(x), \tag{7} \]

which is useful in the analysis of the efficiency of an estimator.

B. Proof

We prove a more generalized form:

\[C_E(x) \geq b(x)b^T(x) + (I_m - \nabla^T_X b(x))J^{-1}(x)(I_m - \nabla_X b(x))^T, \tag{8} \]

where \(b(x) \) is the bias of this estimator,

\[b(x) = x - E(\hat{X}(Y)). \tag{9} \]

It is obvious that when the estimator is unbiased, that is, \(b(x) = 0 \), (8) degenerates to (1).

Form a \(2m \) dimensional vector

\[Z = \begin{bmatrix} x - \hat{X}(Y) - b(x) \\ \nabla_x \ln(f_Y(Y|x)) \end{bmatrix}. \tag{10} \]

Then let

\[C_Z = E[ZZ^T] = \begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix}. \tag{11} \]
be its correlation matrix. From (2) and (3), we can immediately have
\[C_{11} = C_E(x) - b(x)b^T(x), \quad (12) \]
\[C_{22} = J(x). \quad (13) \]

It remains to evaluate
\[C_{21}^T = C_{12} = E[(x - \hat{X}(Y) - b(x)) \nabla_x^T \ln(f_Y(Y|x))] \]
\[= \int (x - \hat{X}(y) - b(x)) \nabla_x^T (f_Y(y|x))dy. \quad (14) \]

Note
\[0 = \nabla_x^T \{[x - \hat{X}(y) - b(x)]f_Y(y|x)\} \]
\[= f_Y(y|x) \nabla_x^T [x - \hat{X}(y) - b(x)] + [x - \hat{X}(y) - b(x)] \nabla_x^T f_Y(y|x) \]
\[= f_Y(y|x)[I_m - \nabla_x^T b(x)] + [x - \hat{X}(y) - b(x)] \nabla_x^T f_Y(y|x). \quad (15) \]

Integrating this identity with respect to \(y \) gives
\[C_{12} = -I_m + \nabla_x^T b(x). \quad (16) \]

Assuming the information matrix \(C_{22} = J(x) \) is positive definite (i.e., invertible, which is usually true) at point \(X \), we can perform Schur decomposition to \(C_Z(x) \):
\[
\begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix} = \begin{pmatrix} I_m & C_{12}C_{22}^{-1} \\ 0 & I_m \end{pmatrix} \begin{pmatrix} C_{11} - C_{12}C_{22}^{-1}C_{21} & 0 \\ 0 & C_{22} \end{pmatrix} \begin{pmatrix} I_m & 0 \\ C_{22}^{-1}C_{21} & I_m \end{pmatrix}. \]

Because the correlation matrix \(C_Z(x) \geq 0, C_{11} - C_{12}C_{22}^{-1}C_{21} \) is also non-negative definite, i.e.,
\[C_E(x) - b(x)b^T(x) - (I_m - \nabla_x^T b(x))J^{-1}(x)(I_m - \nabla_x^T b(x))^T \geq 0, \quad (17) \]

which is exactly (8).
\[\square \]
C. Example

1) CRB Calculation: Consider the estimation of the mean and variance of a sequence \{Y_k, 1 \leq k \leq N\} of i.i.d. \(N(m, v)\) gaussian random variables.

\[
f_Y(y_k|m, v) = \frac{1}{\sqrt{2\pi v}} e^{-\frac{(y_k-m)^2}{2v}}, k = 1, 2, \ldots, N,
\]

\[
f_Y(y|m, v) = \frac{1}{(\sqrt{2\pi v})^N} e^{-\frac{\sum_{k=1}^{N} (y_k-m)^2}{2v}},
\]

\[
L(y|m, v) = \ln(f_Y(y|m, v)) = -\frac{N}{2} \ln(2\pi v) - \frac{1}{2v} \sum_{k=1}^{N} (y_k - m)^2.
\]

First order derivatives are

\[
\frac{\partial L}{\partial m} = \frac{1}{v} \sum_{k=1}^{N} (y_k - m), \quad (18)
\]

and

\[
\frac{\partial L}{\partial v} = -\frac{N}{2v} + \frac{1}{2v^2} \sum_{k=1}^{N} (y_k - m)^2. \quad (19)
\]

Then second derivatives are

\[
\frac{\partial^2 L}{\partial m^2} = -\frac{N}{v},
\]

\[
\frac{\partial^2 L}{\partial v^2} = \frac{N}{2v^2} - \frac{1}{v^3} \sum_{k=1}^{N} (y_k - m)^2,
\]

and

\[
\frac{\partial^2 L}{\partial m \partial v} = -\frac{1}{v^2} \sum_{k=1}^{N} (y_k - m).
\]

Therefore the Fisher Information matrix is

\[
J(m, v) = N \begin{pmatrix} v^{-1} & 0 \\ 0 & (2v^2)^{-1} \end{pmatrix}, \quad (20)
\]

\[
J^{-1}(m, v) = N^{-1} \begin{pmatrix} v & 0 \\ 0 & 2v^2 \end{pmatrix}. \quad (21)
\]

Then the error variances of the entries of any unbiased estimator must satisfy

\[
E[(m - \hat{m}(Y))^2] \geq \frac{v}{N}, \quad (22)
\]

\[
E[(v - \hat{v}(Y))^2] \geq \frac{2v^2}{N}. \quad (23)
\]
2) Efficiency: An unbiased estimator is efficient if it reaches its CRB, which means \(C_E(X) - J^{-1}(X) = 0 \). Further if only a partial of the eigenvalues of \(C_E(X) - J^{-1}(X) \) is zero, it is called partially efficient.

By setting (18) and (19) to be zero, we have
\[
\hat{m}_{ML}(Y) = \frac{1}{N} \sum_{k=1}^{N} y_k, \tag{24}
\]
and
\[
\hat{v}_{ML}(Y) = \frac{1}{N} \sum_{k=1}^{N} (y_k - \hat{m})^2. \tag{25}
\]

It is proved in [1] that
\[
E[\hat{m}_{ML}(Y)] = m, \tag{26}
\]
\[
E[\hat{v}_{ML}(Y)] = \frac{N - 1}{N} v, \tag{27}
\]
\[
E[(m - \hat{m}_{ML}(Y))^2] = \frac{v}{N}, \tag{28}
\]
\[
E[(v - \hat{v}_{ML}(Y))^2] = \frac{2N - 1}{N^2} v^2. \tag{29}
\]

From the results we see that the unbiased estimator \(\hat{m}_{ML}(Y) \) is efficient because it reaches its CRB as defined in (21). Even though the estimator \(\hat{v}_{ML}(Y) \) is biased, its error variance, however, is smaller than the CRB for unbiased estimators. This implies that it is not necessary that biased estimators have poor error variance performances, instead allowing a small bias can sometimes be beneficial.

Another fact mentioned in [1] on pp. 145 is that all ML estimators have these two properties:

1) Asymptotically unbiased, i.e., \(\lim_{N \to \infty} b(X) = 0 \);
2) Asymptotically efficient, i.e., \(\lim_{N \to \infty} E[(x_i - \hat{x}_i(Y))^2] = [J^{-1}]_{ii}(X) \);

which can be seen from the example above.

II. QUANTIFICATION OF SINGLE SPIN-ECHEL SIGNALS

A. Formulation

We use the model that introduced in Chap. 5.2 Proposed formulation [2], ignoring baseline signals.
\[
s[m] = s_{\text{metab}}[m] + \xi[m], \tag{30}
\]
$s_{\text{metab}}[m] = e^{i\phi_0} \sum_{n=1}^{N} a_n(TE) \varphi_{n,TE}[m] \psi_{n,d_n}[m]$, \hspace{1cm} (31)

$m = 0, 1, \ldots, M - 1$,

where $\xi[m] \sim N(0, \sigma^2)$ is a complex gaussian noise, ϕ_0 is a zero-order term phase, $a_n(TE)$ is a real positive amplitude assumed to exponentially decay with respect to TE

$$a_n(TE) = c_n e^{-TE/T_{2,n}},$$ \hspace{1cm} (32)

and $\varphi_{n,TE}[m]$ and $\psi_{n,d_n}[m]$ are metabolite basis function and signal decay, respectively, defined as

$$\varphi_{n,TE}[m] = \sum_{l=1}^{L_n} \alpha_{l,n}(TE) e^{-i\beta_{l,n}(TE)} e^{-i2\pi f_{l,n}(TE)m\Delta t},$$ \hspace{1cm} (33)

$$\psi_{n,d_n}[m] = e^{-m\Delta t/d_n}.$$ \hspace{1cm} (34)

In the above formulations, $T_{2,n}$ is a metabolite-dependent relaxation constant, d_n is a real lineshape parameter and Δt is the sampling time. $\alpha_{l,n}(TE)$, $\beta_{l,n}(TE)$ and $f_{l,n}(TE)$ are relative amplitude, phase and frequency of the l-th resonance of the n-th metabolite which can all be determined from quantum mechanical simulations.

The parameter vector that we are going to estimate is

$$\theta = [a_1, \ldots, a_N, d_1, \ldots, d_N, \phi_0]^T.$$ \hspace{1cm} (35)

B. Entrywise Derivation of CRB

The probability distribution function of an n-channel i.i.d. real gaussian variable $X \sim N(0, \sigma^2 I_n)$, $X \in \mathbb{C}^n$ is

$$f_X(x) = \frac{1}{(2\pi\sigma^2)^{n/2}} e^{-\frac{\|x\|^2}{2\sigma^2}}.$$ \hspace{1cm} (36)

The likelihood function of $s[m], m = 0, \ldots, M - 1$ is therefore

$$L(s[m]) = \frac{1}{(\pi\sigma^2)^M} e^{-\frac{\|\xi[m]\|^2}{\sigma^2}},$$

$$\ln L(s[m]) = \text{const} - \frac{1}{\sigma^2} \sum_{m=0}^{M-1} |\xi[m]|^2,$$ \hspace{1cm} (37)

where $\xi[m] \sim N(0, \sigma^2)$. Using the result that $\frac{\|x\|^2}{\partial \alpha} = z(z^*) + z^*(\frac{\partial z}{\partial \alpha}) = 2\text{Re}\{z(\frac{\partial z^*}{\partial \alpha})\}$ where $z \in \mathbb{C}, \alpha \in \mathbb{R}$, we have

$$\frac{\partial \ln L}{\partial \theta_k} = -\frac{1}{\sigma^2} \sum_{m=0}^{M-1} \left\{ \xi[m] \frac{\partial \xi^*[m]}{\partial \theta_k} + \xi^*[m] \frac{\partial \xi[m]}{\partial \theta_k} \right\},$$ \hspace{1cm} (38)
where
\[
\xi^*[m] = s^*[m] - e^{-i\phi_0} \sum_{n=1}^{N} a_n(TE) \varphi^*_{n,TE}[m] \psi^*_{n,d_k}[m],
\]
\[
\left(\frac{\partial \xi[m]}{\partial a_k}\right)^* = \frac{\partial \xi^*[m]}{\partial a_k} = -e^{-i\phi_0} \varphi^*_{k,TE}[m] \psi^*_{k,d_k}[m],
\] (39)
\[
\left(\frac{\partial \xi[m]}{\partial d_k}\right)^* = \frac{\partial \xi^*[m]}{\partial d_k} = -e^{-i\phi_0} a_k(TE) \varphi^*_{k,TE}[m] \frac{\partial \psi^*_{k,d_k}[m]}{\partial d_k},
\] (40)
\[
\left(\frac{\partial \xi[m]}{\partial \phi_0}\right)^* = \frac{\partial \xi^*[m]}{\partial \phi_0} = i e^{-i\phi_0} \sum_{n=1}^{N} a_n(TE) \varphi^*_{n,TE}[m] \psi^*_{n,d_k}[m],
\] (41)
\[
k = 1, 2, \ldots, N.
\]

By (6), we have
\[
F_{p,q}(\theta) = E_\xi \left[\left(\frac{\partial \ln L}{\partial \theta_p} \right) \left(\frac{\partial \ln L}{\partial \theta_q} \right) \right]
\] (42)

In calculating that, we will need the expectation of \(\xi^*[m_1] \xi[m_2] \) and \(\xi[m_1] \xi[m_2] \), \(\forall m_1, m_2 = 1, \ldots, M \). Because the gaussian noise channels are i.i.d., it is easy to get
\[
E_\xi \{ \xi^*[m_1] \xi[m_2] \} = \begin{cases}
\sigma^2, & \text{for } m_1 = m_2 \\
0, & \text{for } m_1 \neq m_2
\end{cases}
\] (43)

\[
E_\xi \{ \xi[m_1] \xi[m_2] \} = 0, \text{ for } m_1 \neq m_2.
\]

To handle \(\xi[m] \xi[m] \), we firstly decompose it into real variables:
\[
\xi[m] = \xi_r[m] + i \xi_i[m],
\] (44)

where \(\xi_r[m], \xi_i[m] \sim N(0, \frac{\sigma^2}{2}) \) and are independent with each other. And then
\[
E_\xi \{ \xi[m] \xi[m] \} = E_\xi \{ \xi_r^2 + 2i \xi_r \xi_i - \xi_i^2 \} = E_\xi \{ \xi_r^2 - \xi_i^2 \} = 0.
\] (45)

Therefore
\[
E_\xi \{ \xi[m_1] \xi[m_2] \} = 0, \forall m_1, m_2 = 1, \ldots, M.
\] (46)
Taking (43) and (46) into consideration, the entries of the Fisher Information matrix is

\[
F_{p,q}(\theta) = \frac{1}{\sigma^4} E\xi \left\{ \sum_{m_1=0}^{M-1} \left[\xi[m_1] \frac{\partial \xi^*[m_1]}{\partial \theta_p} + \xi^*[m_1] \frac{\partial \xi[m_1]}{\partial \theta_p} \right] \right. \\
\left. + \sum_{m_2=0}^{M-1} \left[\xi[m_2] \frac{\partial \xi^*[m_2]}{\partial \theta_q} + \xi^*[m_2] \frac{\partial \xi[m_2]}{\partial \theta_q} \right] \right\} \\
= \frac{1}{\sigma^4} E\xi \left\{ \sum_{m=0}^{M-1} \left[\xi[m] \xi^*[m] \frac{\partial \xi^*[m]}{\partial \theta_p} \frac{\partial \xi[m]}{\partial \theta_q} + \xi^*[m] \xi[m] \frac{\partial \xi[m]}{\partial \theta_p} \frac{\partial \xi^*[m]}{\partial \theta_q} \right] \right\} \\
= \frac{1}{\sigma^2} \sum_{m=0}^{M-1} \left[\frac{\partial \xi^*[m]}{\partial \theta_p} \frac{\partial \xi[m]}{\partial \theta_q} + \frac{\partial \xi[m]}{\partial \theta_p} \frac{\partial \xi^*[m]}{\partial \theta_q} \right] \\
= \frac{2}{\sigma^2} \sum_{m=0}^{M-1} \text{Re} \left\{ \frac{\partial \xi^*[m]}{\partial \theta_p} \frac{\partial \xi[m]}{\partial \theta_q} \right\}.
\]

Substituting (39)(40)(41) into (47), we get for \(\forall p, q = 1, \ldots, N \)

\[
F_{a_p,a_q}(\theta) = \frac{2}{\sigma^2} \sum_{m=0}^{M-1} \text{Re} \left\{ \frac{\partial \xi^*[m]}{\partial a_p} \frac{\partial \xi[m]}{\partial a_q} \right\} \\
= \frac{2}{\sigma^2} \sum_{m=0}^{M-1} \text{Re} \left\{ -e^{-i\phi_0} \varphi_{p,TE}[m] \psi_{p,d_p}[m] (-e^{i\phi_0} \varphi_{q,TE}[m] \psi_{q,d_q}[m]) \right\} \\
= \frac{2}{\sigma^2} \sum_{m=0}^{M-1} \text{Re} \left\{ \varphi_{p,TE}[m] \psi_{p,d_p}[m] \varphi_{q,TE}[m] \psi_{q,d_q}[m] \right\},
\]

\[
F_{d_p,d_q}(\theta) = \frac{2}{\sigma^2} \sum_{m=0}^{M-1} \text{Re} \left\{ \frac{\partial \xi^*[m]}{\partial d_p} \frac{\partial \xi[m]}{\partial d_q} \right\} \\
= \frac{2}{\sigma^2} \sum_{m=0}^{M-1} \text{Re} \left\{ a_{p,a_q} \varphi_{p,TE}[m] \frac{\partial \psi_{p,d_p}[m]}{\partial d_p} \varphi_{q,TE}[m] \frac{\partial \psi_{q,d_q}[m]}{\partial d_q} \right\},
\]

\[
F_{\phi_0,\phi_0}(\theta) = \frac{2}{\sigma^2} \sum_{m=0}^{M-1} \text{Re} \left\{ \frac{\partial \xi^*[m]}{\partial \phi_0} \frac{\partial \xi[m]}{\partial \phi_0} \right\} \\
= \frac{2}{\sigma^2} \sum_{m=0}^{M-1} \text{Re} \left\{ N \sum_{n_1=1}^{N_1} a_{n_1} \varphi_{n_1,TE}[m] \psi_{n_1,d_n}[m] \]
\sum_{n_2=1}^{N_2} a_{n_2} \varphi_{n_2,TE}[m] \psi_{n_2,d_n}[m] \right\}.
\[
F_{a_p,d_q}(\theta) = \frac{2}{\sigma^2} \sum_{m=0}^{M-1} \text{Re} \left\{ \frac{\partial \xi^*[m]}{\partial a_p} \frac{\partial \xi[m]}{\partial d_q} \right\},
\]

\[
F_{a_p,\phi_0}(\theta) = \frac{2}{\sigma^2} \sum_{m=0}^{M-1} \text{Re} \left\{ \frac{\partial \xi^*[m]}{\partial a_p} \frac{\partial \xi[m]}{\partial \phi_0} \right\},
\]

\[
F_{d_p,\phi_0}(\theta) = \frac{2}{\sigma^2} \sum_{m=0}^{M-1} \text{Re} \left\{ \frac{\partial \xi^*[m]}{\partial d_p} \frac{\partial \xi[m]}{\partial \phi_0} \right\},
\]

Here we have got the entries of \(F_{p,q}(\theta) \) above its diagonal, and the rest of the entries are the conjugate transpose of the upper triangular part.

\[
F(\theta) = \begin{pmatrix}
F_{a,a} & F_{a,d} & F_{a,\phi_0} \\
F_{a,d} & F_{d,d} & F_{d,\phi_0} \\
F_{a,\phi_0}^H & F_{d,\phi_0}^H & F_{\phi_0,\phi_0}
\end{pmatrix}
\]

C. Matrix Derivation of CRB

In deriving the CRB entrywisely, we see the formulations are much complicated due to a large number of summations. If we utilize matrix derivatives, the labor can be greatly reduced.

Rewrite the signal model in matrix form.

\[
s = e^{i\phi_0}Za + \xi,
\]
where $Z_{m,n} = \varphi_{n,TE}[m] \psi_{d,d_n}[m]$, $m = 0, \ldots, M - 1$, $n = 1, \ldots, N$ and
\[
\begin{pmatrix}
 s[0] \\
 s[1] \\
 \vdots \\
 s[M - 1]
\end{pmatrix},
\begin{pmatrix}
 a_1 \\
 a_2 \\
 \vdots \\
 a_N
\end{pmatrix},
\begin{pmatrix}
 d_1 \\
 d_2 \\
 \vdots \\
 d_N
\end{pmatrix},
\begin{pmatrix}
 \xi[0] \\
 \xi[1] \\
 \vdots \\
 \xi[M - 1]
\end{pmatrix}.
\] (57)

I will not keep these variables bold face hereafter for simplicity. Then the likelihood function is
\[
\ln L(s) = \text{const} - \frac{1}{\sigma^2} \|\xi\|^2.
\] (58)

According to my previous weekly summary (week 12) of the gradient calculation of least squares problems, we have
\[
\nabla_\theta \ln L = -\frac{1}{\sigma^2} (J^H \xi + (J^H \xi)^*),
\] (59)
where J is the jacobian matrix of ξ over θ (denote the Fisher Information matrix by another notation F to avoid conflict).
\[
J = \frac{\partial \xi}{\partial \theta} =
\begin{bmatrix}
 \frac{\partial \xi}{\partial a} \\
 \frac{\partial \xi}{\partial d} \\
 \vdots \\
 \frac{\partial \xi}{\partial \phi_0}
\end{bmatrix}
= [-e^{i\phi_0}Z - e^{i\phi_0}DA - ie^{i\phi_0}Za] ,
\] (60)

where
\[
D = \begin{bmatrix}
 \frac{\partial Z_1}{\partial d_1} & \cdots & \frac{\partial Z_N}{\partial d_N}
\end{bmatrix},
\] (61)
\[
A = \begin{pmatrix}
 a_1 & 0 & \cdots & 0 \\
 0 & a_2 & \cdots & 0 \\
 \vdots & \vdots & \ddots & \vdots \\
 0 & 0 & \cdots & a_N
\end{pmatrix},
\] (62)

By (3) and (59), we have
\[
F = E \left\{ (\nabla_\theta \ln L)(\nabla_\theta \ln L)^H \right\}
= \frac{1}{\sigma^4} E \left\{ (J^H \xi + (J^H \xi)^*) (\xi^H J + (\xi^H J)^*) \right\}
= \frac{2}{\sigma^2} \text{Re}\{J^H J\}.
\] (63)
Using (60), we have

\[
F_{a,a}(\theta) = \frac{2}{\sigma^2} \text{Re}\{Z^H Z\},
\]

(64)

\[
F_{d,d}(\theta) = \frac{2}{\sigma^2} \text{Re}\{A^H D^H DA\},
\]

(65)

\[
F_{\phi_0,\phi_0}(\theta) = \frac{2}{\sigma^2} \text{Re}\{a^H Z^H Z a\},
\]

(66)

\[
F_{a,d}(\theta) = \frac{2}{\sigma^2} \text{Re}\{Z^H DA\},
\]

(67)

\[
F_{a,\phi_0}(\theta) = -\frac{2}{\sigma^2} \text{Im}\{Z^H Z a\},
\]

(68)

\[
F_{d,\phi_0}(\theta) = -\frac{2}{\sigma^2} \text{Im}\{A^H D^H Z a\}.
\]

(69)

Finally

\[
F(\theta) = \begin{pmatrix}
F_{a,a} & F_{a,d} & F_{a,\phi_0} \\
F_{a,d}^H & F_{d,d} & F_{d,\phi_0} \\
F_{a,\phi_0}^H & F_{d,\phi_0}^H & F_{\phi_0,\phi_0}
\end{pmatrix}.
\]

(70)

REFERENCES
