
ECE598: Representation Learning: Algorithms and Models Fall 2017

Lecture 18: Graph2Vec

Lecturer: Pramod Viswanath Scribe: Qiang Ning, Nov 21, 2017

18.1 Johnson-Lindenstrauss Lemma

Graph is an important structure to represent entities and the pairwise interactions between them. A
graph G can be written compactly as G = (V,E), where V = {0, 1, . . . , n− 1} is a set of n vertices
and E ⊆ V × V is the edge set such that if (v1, v2) ∈ E, we say vertex v1 is connected with v2.

Graph representations on Euclidean spaces is an old topic. A standard method is to closely mirror the
edge capacities, governed by the Johnson-Lindenstrauss Lemma (JL lemma) proposed by Johnson
and Lindenstrauss in [JL84].

The JL lemma was also geometrically described by the authors as “given n points in Euclidean
space, what is the smallest k = k(n) so that these points can be moved into k-dimensional Euclidean
space via a transformation which expands or contracts all pairwise distances by a factor of at most
1 + ε?”, whereas a more common form of the lemma now is

Theorem 18.1 (JL Lemma). Let ε ∈ (0, 12). Let Q ⊂ Rd be a set of n points and k = 20 logn
ε2

. There
exists a Lipschitz mapping f : Rd → Rk such that for all u, v ∈ Q:

(1− ε)‖u− v‖2 ≤ ‖f(u)− f(v)‖2 ≤ (1 + ε)‖u− v‖2. (18.1)

There are various ways to prove the JL lemma (a brief overview can be found in [DG03]). Although
not the tightest, the one I refer to uses the following lemma:

Lemma 18.1 (Norm preservation). Let x ∈ Rd. Assume that the entries in A ⊂ Rk×d are sampled
independently from N(0, 1). Then

P{(1− ε)‖x‖2 ≤ ‖ 1√
k
Ax‖2 ≤ (1 + ε)‖x‖2} ≥ 1− 2e−(ε

2−ε3)k/4. (18.2)

Given Lemma 8.1, we can readily prove the JL lemma.

The proof of Theorem 8.1. Choose the mapping f in such a way that f = 1√
k
Ax, where A is a k×d

matrix the entry of which is sampled i.i.d. from a Gaussian N(0, 1). We have

P{∃u, v, s.t. the mapping fails to satisfy Eq. (8.1)}
≤

∑
u,v∈Q

P{s.t. the mapping fails to satisfy Eq. (8.1)}

≤ 2n2e−(ε
2−ε3)k/4. (18.3)

If we choose k(ε) properly (e.g., k ≥ 20lnn
ε2

), the probability of (8.3) can be strictly smaller than 1,
which means such a map that satisfies (8.1) always exists.

Note the bound for k does not guarantee that k is smaller than d (dimension reduction). It can also
be seen that the requirement for A to be sampled from N(0, 1) can be further relaxed.

1

18.2 Discrete Fourier Transform

A time series is a special graph. Due to this special structure, we can use the discrete Fourier
transform (DFT) to represent it. Let x = [x0, x1, . . . , xn − 1]T ∈ Rn be a time series. We can think
of it as a graph where each xi, i = 0, . . . , n− 1 is a node, and there is an edge between each pair of
(xi − 1, xi), i = 1, . . . , n− 1. Then the DFT of x is a vector y with its i-th entry defined as follows.

yi =
1√
n

n−1∑
j=0

xje
− 2πij

n .

DFT can also be represented compactly as

y = Fx,

where F ∈ Rn×n and Fij = 1√
n
e−

2πij
n . Note that the matrix F is an orthogonal matrix, so it is

distance-preserving, i.e., ‖Fx1 − Fx2‖2 = ‖x1 − x2‖2

Note: The Fourier transform of a function can be viewed as an expansion of the function in terms
of the eigenfunctions of the Laplacian operator (which is the second derivative operator in R, or the
second order finite difference operator if we discretize it). Generalizing this notion to graph, we can
perform graph Fourier transform as we define the Laplacian matrix of a graph in the next.

18.3 Laplacian Matrix and Graph Embedding

Definition 18.1 (Adjacency Matrix). The adjacency matrix A of a graph G = (V,E) is a |V | × |V |
matrix such that Aij = 1 if (vi, vj) ∈ E and Aij = 0 otherwise.

Definition 18.2 (Degree Matrix). The degree matrix D of a graph G = (V,E) is a |V | × |V |,
diagonal matrix such that Dii is the degree of vi, where the degree of a vertex is the number of
edges that terminate at that vertex.

Definition 18.3 (Laplacian Matrix). The Laplacian matrix L of a graph G = (V,E) is defined as
D −A, where D is the degree matix and A is the adjacency matrix.

Definition 18.4 (Incidence Matrix). Let each edge in the graph have an arbitrary but fixed
orientation. The incidence matrix ∇ is a |E| × |V | matrix defined as

∇ev =


−1 if e.start = v

1 if e.end = v

0 otherwise

Proposition 18.1. L = ∇T∇.

Given the above proposition, we further have:

Proposition 18.2. For an undirected graph, L is symmetric and positive semi-definite.

2

Proposition 18.3. The smallest eigenvalue of L is 0. For a graph with only 1 connected component,
the all-one vector is the only eigenvector associated with eigenvalue 0. In general, if a graph has k
connected components, then the multiplicity of eigenvalue 0 is k.

To get a better understanding of the spectrum of L, we define

Definition 18.5 (Fiedler Vector). The smallest non-zero eigenvalue of L is called the Fiedler value
of a graph. The corresponding eigenvector is called the Fiedler vector.

The Fiedler value is the algebraic connectivity of a graph: the further from 0, the more connected.

Proposition 18.4. The multiplicity of the Fiedler value is always 1.

Therefore, the Fiedler vector u is unique for each graph. And the mapping from each vertex vi ∈ V
to the Fiedler vector ui is a one-dimensional embedding for the graph. Instead of mapping to a single
line, if k eigenvectors of more than one smallest eigenvalues of L are used, we get a k dimensional
embedding for the graph.

18.4 Graph Convolutional Neural Networks

In computer vision, convolutional neural networks (CNN) leverages long-distance dependencies via
multi-scaling filtering. Perhaps motivated by its success, there has been work focused on generalizing
the conventional CNN structure from images (2D or 3D grid graphs) to graphs, hence the graph
convolutional neural networks (GCNN) [Ano18].

Like in CNN, where distant pixels are made closer via pooling, we can use the adjacency matrix
A to traverse through the graph and make distant nodes closer, which leads to the spatial GCNN.
Specifically, for input feature xv at each node v ∈ V of a graph, a typical spatial filtering operation
is:

yv = σ

(
K−1∑
k=0

Wk

(∑
u∈V

(Ak)v,uxu

)
+ b0

)
, ∀v ∈ V,

where σ is the activation function (e.g., ReLU), K ≥ 0 is a hyper-parameter that controls the
filtering operation within K-step hops from each node v ∈ V , Wk, k = 1, 2, . . . ,K and b0 are
parameters to learn, and A is the adjacency matrix (either normalized or not). Obviously, Ak selects
the nodes of a distance of k hops from v.

Replacing the adjacency matrix by the Laplacian matrix, we get the spectral GCNN. Specifically, its
filter is of the form:

yv = σ

(
K−1∑
k=0

W ′k

(∑
u∈V

(Lk)v,uxu

)
+ b′0

)
, ∀v ∈ V,

where W ′k, k = 1, 2, . . . ,K and b′0 are parameters to learn, and L is the Laplacian matrix (either
normalized or not).

Theorem 18.2 (Spectral and spatial GCNN are equivalent). Let the spectral and spatial GCNN
have the same activation function σ and K and both the adjacency matrix and Laplacian matrix are
normalized (i.e., Ã and L̃). Then for a same graph G = (V,E), for any choice of Wk, k = 1, . . . ,K
and b0, there exist W ′k, k = 1, . . . ,K and b′0 such that both GCNNs have the same transformation.

3

Proof. Let V = {1, 2, . . . , n}. Let xi and yi be the d-dimensional state and output at vertex i ∈ V .
Let X = [x1,x2, . . . ,xn] and Y = [y1,y2, . . . ,yn] be the matrices representing them. Then the
transformation of spatial GCNN can be written as

Y = σ

(
K−1∑
k=0

WkXÃ
k + b01

T

)
.

Similarly, the transformation of spectral GCNN is now

Y = σ

(
K−1∑
k=0

W ′kXL̃
k + b′01

T

)
. (18.4)

Considering Ã = D−
1
2AD

1
2 , where D is the degree matrix defined above and L̃ = I − Ã, we can

write Eq. (8.4) as

Y = σ

(
K−1∑
k=0

W ′kX(I − Ã)k + b′01
T

)

= σ

(
K−1∑
k=0

W ′kX
k∑
i=0

(
k
i

)
Ik−i(−1)iÃi + b′01

T

)

= σ

(
K−1∑
k=0

(
K−1∑
i=k

W ′i

(
i
k

)
(−1)i−k

)
XÃk + b′01

T

)
.

So apparently we have the following relations between the parameters

b0 = b′0

WK−1 = W ′K−1

WK−2 = W ′K−1 −W ′K−1(K − 1)

· · ·

Wk =
K−1∑
i=k

W ′i

(
i
k

)
(−1)i−k, k = K − 3,K − 4, . . . , 0

4

Bibliography

[Ano18] Anonymous. Graph2Seq: Scalable learning dynamics for graphs. International Conference
on Learning Representations, 2018.

[DG03] Sanjoy Dasgupta and Anupam Gupta. An elementary proof of a theorem of Johnson and
Lindenstrauss. Random Structures & Algorithms, 22(1):60–65, 2003.

[JL84] William B Johnson and Joram Lindenstrauss. Extensions of lipschitz mappings into a
hilbert space. Contemporary mathematics, 26(189-206):1, 1984.

5

	8.1 Johnson-Lindenstrauss Lemma
	8.2 Discrete Fourier Transform
	8.3 Laplacian Matrix and Graph Embedding
	8.4 Graph Convolutional Neural Networks

